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Abstract
The quality of synthetic speech is typically evaluated using sub-
jective listening tests. An underlying assumption is that these
tests are reliable, i.e., running the test multiple times gives con-
sistent results. A common approach to study reliability is a
replication study. Existing studies focus primarily on Mean
Opinion Score (MOS), and few consider the error bounds from
the original test. In contrast, we present a replication study of
both MOS and AB preference tests to answer two questions: (1)
which of the two test types is more reliable for system compar-
ison, and (2) for both test types, how reliable are the results
with respect to their estimated standard error? We find that
while AB tests are more reliable for system comparison, stan-
dard errors are underestimated for both test types. We show that
these underestimates are partially due to broken independence
assumptions, and suggest alternate methods of standard error
estimation that account for dependencies among ratings.
Index Terms: speech synthesis evaluation, listening tests, re-
producibility

1. Introduction
Despite renewed interest in objective evaluations [1], subjec-
tive listening tests continue to be the gold standard for text-to-
speech (TTS) evaluation and are standard practice across the
field [2]. Among the most widely used are Mean Opinion Score
(MOS), preference/AB tests, and MUSHRA[3, 4]. While exact
setups differ, these tests all try to measure the (possibly relative)
intelligibility, naturalness, similarity, or expressiveness of syn-
thetic speech, with naturalness being the most common. While
naturalness is an under-specified term [5], it is generally under-
stood to measure roughly how “human-like” the speech is.

A natural question that arises from MOS results is: if sys-
tem A scores higher than system B on MOS, under what condi-
tions can we conclude that system A is better than system B, and
is this comparison as reliable as a direct AB test between these
systems? We assume that the MOS test setups in question are
generally comparable in terms of the platform and rating scale
used for the evaluation, but not necessarily identical in terms of
the individual listeners or when the test was run. Motivated by
the question of system comparison and a suspicion that the con-
fidence intervals we calculate for both MOS and AB are overly
optimistic, we ask the following research questions:
• RQ1: Which of the two test types, MOS or AB, is more reli-

able for comparing TTS systems?
• RQ2: For both MOS and AB tests, how reliable are the re-

sults with respect to estimated standard errors?
To answer both of these questions, we present a replication

study on MOS and AB listening tests. For RQ2 in particular, we

use statistical methods that assume clustering is present in the
data, i.e., that observations within clusters are not independent,
but observations between clusters are. While these methods are
not novel, to the best of our knowledge their application to TTS
listening test data is. Lastly, the aim of the experiments pre-
sented is not to find the single best analysis technique – this
will vary on a test-by-test basis. Rather, the aim is to demon-
strate that cluster-based methods are both theoretically and em-
pirically justified in the analysis of listening test data.

2. Related Work
A few studies investigate the reliability of MOS by repeating
listening tests from past Blizzard Challenges1. [6] showed that
while the correlation between historical and repeated MOS tests
is high, old systems tend to score lower today compared to sev-
eral years ago. In a similar study, [7] found the score drop
between repeated historical evaluations to be particularly stark
when evaluated alongside newer, higher-quality synthesis tech-
nologies, suggesting that absolute scores are not meaningful due
to anchoring effects from the other systems in the test. However,
they still found the rank order of the systems to be preserved,
indicating that as a comparison tool MOS is reliable.

Less work has been done to investigate the reliability of
MOS on shorter time scales. An exception is [8], who repeated
MOS tests in three different locations around the same time and
found high reliability, especially when considering the confi-
dence intervals of the scores. However, their tests bear little
resemblance to most modern TTS evaluations, as they tested
audio codecs in a tightly controlled laboratory environment, as
opposed to synthetic speech using online crowdsourcing tools.

The impact of the number of listeners and test utterances on
listening test reliability has also been studied. In a re-analysis
of the 2013 Blizzard Challenge evaluations, [9] concluded that
listening tests should consist of a minimum of 150 total judge-
ments from at least 30 listeners; any less resulted in poor sen-
sitivity and reliability. In [10], a technique to correct for score
bias arising from listener and utterance variation is proposed.
While both studies confirm the influence of listener and utter-
ance variation on MOS, only existing listening test data was an-
alyzed, meaning results could not be confirmed across multiple
runs of the same test.

2.1. Parametric vs. non-parametric statistical analysis

In this work we analyze listening tests using parametric sta-
tistical methods such as the t-test. We acknowledge that non-
parametric methods are commonly used for listening test analy-
ses, with [10] and [11] advocating for their use because Likert-

1https://www.synsig.org/index.php/Blizzard Challenge
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style response formats produce ordinal, rather than interval data.
Thus, the argument goes, it is not valid to compare means, com-
pute standard deviations, or indeed run any kind of parametric
test. However, this point is disputed by many in the statisti-
cal and measurement theory literature [12, 13, 14], and even if
we were to accept this notion, other studies illustrate that many
parametric methods in fact show considerable robustness in the
face of violated assumptions [15, 16]. This is important because
the ordinalist interpretation is limiting in terms of the available
analysis techniques, the most important of which in the context
of this work is the confidence interval, which is widely-reported
on listening tests [17, 18, 19, 20]. Indeed, the ITU recommen-
dation upon which MOS is based advocates for the use of con-
fidence intervals (§A.4.5, [3]). Hence, we feel justified in our
interpretation of the MOS and AB response formats as interval
scales.

3. Comparing TTS Systems Reliably
In this section we describe our replication study, which is de-
signed to compare the reliability of MOS and AB (RQ1). Start-
ing with a proprietary dataset consisting of the previous year
of listening tests, we consider cases where, for each side com-
pared in an AB test, two MOS test runs exist, testing the exact
same test set for both the A and B side of the test. We call
these tests MOSA and MOSB respectively, and the population
we sample from is the set of (AB, MOSA, MOSB) triplets. For
all of these triplets we run two hypothesis tests. For AB, we run
a one-sample t-test with the null hypothesis that the mean pref-
erence score is 0.0. For MOSA and MOSB we run a two-sample
paired t-test with the null hypothesis that the means of MOSA

and MOSB are equal. Both tests use an alpha level of 0.01.
In order to make a fair comparison between MOS and AB,

our sampling scheme is designed to select a diverse set of triplets
that is not biased in favor of one test type. Using the results of
the hypothesis tests, we break the population into 4 strata and
sample equally from each stratum: (1) both t-tests were statis-
tically significant, (2-3) one of the two t-tests was statistically
significant, and (4) neither t-test was significant. Then, within
each stratum, we perform two rounds of systematic sampling
[21], one using the value of the AB t-statistic to order tests and
the other using the value of the MOSA vs. MOSB t-statistic.

To compare the reliability of AB vs MOSA - MOSB we con-
sider the Pearson correlation coefficient (PCC), and the Spear-
man rank correlation coefficient (SRCC) between original and
repeated runs of each test.

3.1. Estimating uncertainty

To address RQ2, we investigate methods for estimating the un-
certainty of test scores, and introduce a method to evaluate the
accuracy of these estimates.

Because the ratings from a listening test only constitute a
sample of all possible ratings, the mean rating (the “score” of
the test) is only a point estimate of “true” score, and will there-
fore contain some error. The standard error of the mean (SE)
measures the uncertainty about how much sample means devi-
ate from the true mean. In particular, it is the standard deviation
of the mean’s sampling distribution. The SE is used to compute
two important quantities: confidence intervals and t-statistics.

For an independent sample of size n from a population with
a standard deviation of σ, the standard error of the mean σx̄ is:

σx̄ =
σ√
n

(1)

However, the population standard deviation is typically not known,
so the SE cannot be calculated exactly and estimation tech-
niques must be employed. Accurate estimations of the SE are
critical to the reliability of listening tests – overestimation leads
to Type II errors and underestimation leads to (arguably more
serious) Type I errors. In this paper, we will compare four meth-
ods of standard error estimation to see which is most predictive
of the replication study results.

3.1.1. Analytical method (AM)

The most common method, which we refer to as the analytical
method (AM), is to use the sample standard deviation as a point
estimate for the population standard deviation σ in Eq. 1.

3.1.2. Standard bootstrapping (SB)

An alternative to the analytical method is bootstrapping; rather
than estimating the population standard deviation, we estimate
the standard error directly using the empirical distribution of
our sample as an approximation of the population distribution
[22]. The procedure is as follows: let X = X1, ..., Xn be an
independent random sample of size n. For i = 1, ...k, sample n
items with replacement from X, and compute the sample mean
µ̂i. For a sufficiently large k (we use 10,000), the set of means
µ̂ = {µ̂1, ...µ̂k} approximates the sampling distribution of the
mean. The sample standard deviation of µ̂ is the bootstrap esti-
mate of the SE.

3.1.3. Cluster bootstrapping (CB)

The analytical method and standard bootstrapping assume ob-
servations are independent, which usually does not hold for
listening tests. In our replication study, listeners rate multiple
stimuli, which results in correlations between data points. We
suppose that the set of ratings given by a single listener forms a
cluster of ratings, such that items within a cluster are dependent,
but items between clusters are independent.

A modification can be made to the bootstrapping procedure
to account for clustered data. Suppose our sample is organized
into m non-empty clusters C1, ..., Cm, with each observation
being assigned to exactly one cluster. To compute a bootstrap
sample mean, µ̂i, instead of sampling individual observations,
we sample entire clusters. When each cluster contains an equal
number of observations, we simply need to resample m clus-
ters with replacement to arrive at a sample of size n. When the
number of observations in each cluster are different, we resam-
ple clusters until we reach a cluster Cl that will increase the
sample size to some n′ ≥ n. From Cl, we then randomly select
|Cl| − (n′ − n) observations. This gives us a sample of size n
and we can proceed with the procedure outlined in §3.1.2.

3.1.4. Effective sample size correction (ESS)

The final SE estimation method we investigate uses Eq. 1, but
adjusts the sample size n to account for clustering in the sample.
We use the design effect (Deff), introduced by [23], which ex-
presses the factor by which the sampling variance of a complex
sampling design is inflated relative to the variance that would
be observed using simple random sampling. Using this quan-
tity, we can estimate the effective sample size, neff, as n

Deff
(see

[23] for full details regarding this method). The concept of the
design effect is broadly applicable, but in our case, it allows us
to take into account any clustering present in our sample.

There are multiple ways of calculating the design effect. We
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use the deffc formula from [24]. In this formula, we assume all
sampling weights equal 1, and we estimate the intraclass corre-
lation coefficient ρ using the ICC(1) method from [25], with the
classes being the sets of ratings given by a single listener.

3.2. Evaluating standard error estimation

Because computing the true standard error requires the unknown
population parameter σ, we evaluate the accuracy of our SE es-
timates indirectly using the following method.

For each listening test i = 1, ..., n, let m1
i and m2

i be the
original and repeated test scores, respectively. We define the
mean absolute difference (MAD) as:

MAD =
1

n

n∑

i=1

|m1
i −m2

i | (2)

Now let M1
i and M2

i be random variables representing the
original and repeated test scores. Because all original and re-
peated pairs are run within 1 year of each other, we assume
they are identically distributed, and because M1

i and M2
i rep-

resent sample means, we assume M1
i ,M

2
i ∼ N (µi, σ

2
i,x̄) by

the Central Limit Theorem, where µi is the true mean score for
test i and σi,x̄ is the standard error. Assuming independence,
M1
i −M2

i ∼ N (0, 2σ2
i,x̄), and E[|M1

i −M2
i |] = 2σi,x̄√

π
(half-

normal distribution). We can then compute the mean expected
absolute difference (MEAD) of original and repeated scores:

MEAD =
1

n

n∑

i=1

E[|M1
i −M2

i |] =
1

n

n∑

i=1

2σi,x̄√
π

(3)

We will compare the measured MEAD for each SE estima-
tion technique to the observed MAD, with MEAD values closer
to the MAD indicating the SE is more accurate on average.

4. Experimental Setup
The set of listening tests considered were crowd-sourced over
a 1 year period from September 2021 to September 2022. We
chose 1 year to give us a large enough pool to sample from,
while being short enough that we do not expect scores to drop
due to advancements in synthesis technology. For MOS, listen-
ers are presented with a speech sample and are asked to rate
how ‘natural’ it sounds on a 9-point scale from 1 to 5 with 0.5
increments, with whole number points being labelled poor, bad,
fair, good, and excellent. For AB, listeners are presented with
two speech samples and are asked which side sounds ‘better’ on
a 7-point scale from -3 to +3 with 0 labelled about the same and
the three points on both sides labelled slightly better, better, and
much better.

In total, we sample 10 triplets per stratum (40 overall). This
amounts to 113 listening tests in total, due to overlap between
MOSA and MOSB tests between triplets. English varieties (US,
UK, AU, IN) make up 60% of tests, with the remaining 40%
coming from French, Portuguese, Chinese, Spanish, German,
and Hindi.

The test parameters are the same across original and re-
peated tests: tests are run using the exact same questions and
response formats on the same sets of approximately 1000 stim-
uli (µ: 966; σ: 101), with 1 rating per stimulus. The maximum
number of stimuli allocated to one listener is held constant be-
tween the original and repeated runs, and it was possible for
the same listener to participate in both tests. The repeated tests
were run in October and November 2022.

Table 1: Pearson correlation coefficient (PCC) and Spearman rank cor-
relation coefficient (SRCC) per test type with 95% confidence intervals.

Test Type PCC SRCC

MOS 0.956 ± 0.02 0.896 ± 0.05
AB 0.975 ± 0.02 0.809 ± 0.11
MOSA- MOSB 0.835 ± 0.10 0.596 ± 0.21

MOSA- MOSRandomB 0.945 ± 0.04 0.893 ± 0.07

Table 2: Mean expected absolute difference (MEAD) for each standard
error estimation technique. Values closer to MAD (top line) are better.

MOS AB

MAD 0.068 0.050

MEAD – iid-based AM 0.024 0.029
SB 0.024 0.029

MEAD – cluster-based CB 0.069 0.045
ESS 0.068 0.046

5. Results and Analysis
5.1. MOS vs. AB

Table 1 shows the correlations between original and repeated
tests. MOS shows high correlations, in line with the results re-
ported by [6]. Furthermore, we found no evidence that scores
decreased over the 1 year period, with the overall mean dif-
ference between original and repeated tests being 0.015 ± 0.021
(95% CI). This indicates that absolute scores are reasonably sta-
ble, providing the tests use the same setup and are run within a
short enough time frame.

Which of the two test types, MOS or AB, is more reliable
for comparing TTS systems (RQ1)? Table 1 shows that for the
system comparisons in our experiments, a direct AB is more
reliable than comparing separate MOS tests, though confidence
intervals overlap for SRCC. The drop in correlation from MOS
to MOSA - MOSB can be partially attributed to the choice of A
and B – in our dataset the two systems being compared tend to
be similar in quality, meaning scores are concentrated around 0.
To illustrate this, we run a version of MOSA - MOSB, MOSA -
MOSRandomB, where each side A is paired with a random side B,
and find the correlations to be much higher than MOSA - MOSB.
Therefore, we conclude that while MOS exhibits acceptable re-
liability, AB tests should be preferred over separate MOS tests
for system comparison, especially when the systems under test
are of a similar quality.

5.2. Accuracy of standard error estimates

While Table 1 shows reliability in terms of raw scores, we are
also interested in how repeated tests compare in terms of their
estimated standard errors (RQ2). Table 2 shows the MAD for
MOS and AB, along with the MEAD scores for each standard
error estimation method. We see that iid-based methods sys-
tematically underestimate the MAD by a factor of 1.67 for AB
and 2.83 for MOS. Both cluster-based methods show large im-
provements, nearly matching the observed MAD.

Table 2 shows that cluster-based SE estimation methods
produce more accurate SEs on average, but do they capture any-
thing meaningful at the individual test level? We test this by
checking if tests with higher SE estimates tend to have larger
differences between the original and repeated tests. Table 3
shows the PCC and SRCC between the estimated SE and the
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Figure 1: SE estimates for both bootstrapping methods vs number of listeners for AB (left) and MOS (right).

Table 3: Correlations (PCC and SRCC) between absolute differences
between original and repeated scores and SE estimates with 95% con-
fidence intervals.

Test SE estimator PCC SRCC

MOS AM 0.17 ± 0.22 0.07 ± 0.23
SB 0.16 ± 0.22 0.06 ± 0.23
CB 0.28 ± 0.21 0.38 ± 0.20
ESS 0.26 ± 0.21 0.38 ± 0.20

AB AM 0.56 ± 0.22 0.59 ± 0.21
SB 0.56 ± 0.22 0.59 ± 0.21
CB 0.64 ± 0.19 0.45 ± 0.25
ESS 0.62 ± 0.20 0.48 ± 0.25
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Figure 2: SE estimates for MOS tests for SB, CB, and Randomized CB.

absolute difference between original and repeated tests for the
four SE estimation strategies. The results for MOS are clear:
cluster-based methods correlate with test differences and iid-
based methods do not, indicating that the methods are doing
more than simply scaling up iid-based SEs. However, there
seems to be little to no effect on AB tests. This discrepancy may
be explained by the effect of the number of listeners on both SE
and score differences, which we discuss in the next section.

5.3. Effect of number of listeners

As the CB method clusters at listener level (§3.1.3), we are in-
terested in the relationship between the number of listeners and
the estimated SE for iid-based and cluster-based methods. Fig-
ure 1 shows the results for SB and CB (results for AM and ESS
were similar, but were omitted for clarity). Cluster-based SEs
correlate strongly with the number of listeners, roughly exhibit-
ing a power law relationship. The effect is less pronounced
for AB tests, indicating they are less affected by the number
of listeners than MOS. We hypothesize this is due to the com-
parative nature of the task, which makes the rating scale more

interpretable than MOS, thus leading to higher rater agreement.
SE estimates from CB correlate with the number of listen-

ers, but could this simply be due to the fact that the resampling
units (clusters) are larger the fewer listeners there are? To an-
alyze this, we run a version of CB where we keep the number
and size of clusters from normal CB, but rather than each clus-
ter corresponding to one listener’s ratings, we randomly allocate
ratings to clusters. Figure 2 shows the histogram of Random-
ized CB SEs alongside SB and CB for all MOS tests. Random-
ized CB’s estimates are very close to SB, indicating that the
inflated SEs from CB are due to genuine dependencies within
clusters and not larger sampling units.

Finally, we investigate whether the number of listeners who
took part in a test correlates with the score differences between
original and repeated tests. We found the correlation to be sta-
tistically significant (p < 0.01) for MOS, and not for AB. This
points to why cluster-based SEs were only predictive of test dif-
ferences for MOS; SE and MOS differences are both correlated
with the number of listeners, while for AB only SE was corre-
lated with the number of listeners.

6. Conclusions and Future Work
We presented a replication study on MOS and AB listening tests
run within a 1 year period. We found AB to be more reliable
than MOS for system comparison. However, for both MOS and
AB, we found that out-of-the-box approaches to standard error
estimation resulted in underestimates up to a factor of 2.8. We
showed that this underestimation can partially be attributed to
broken independence assumptions in the listening test data that
arise from the same listener rating multiple stimuli. We showed
that cluster-based methods produced better standard error esti-
mates, and recommend their adoption for listening test analy-
ses. We also found that AB reliability was less influenced by
the number of listeners, suggesting that comparative tests may
be more appropriate for situations in which a large number of
listeners cannot be recruited.

In this study we investigated MOS tests where only stimuli
from one system were rated, and each stimulus was rated only
once. Future work should investigate more complex setups in-
volving multiple systems such as MOS using Latin square de-
signs or MUSHRA, as these may prove to be more reliable.
When each stimulus is rated multiple times, additional depen-
dencies are introduced because scores within a single item will
be correlated. For this case, future work could investigate mixed-
effects models, which seem promising for their ability to model
crossed random effects [26], the random effects being listeners
and stimuli.
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